

# Structure and dielectric properties of HfO<sub>2</sub> films prepared by sol-gel route

#### Maria Zaharescu

Institute of Physical Chemistry "Ilie Murgulescu" - Roumanian Academy 202 Splaiul Independentei, 060021 Bucharest, Romania

## **Outline**

- 1. Introduction:
- HfO<sub>2</sub> properties and applications
- 2. Experimental
- Film preparation sol-gel
- Film characterisation
- 3. Results and discussion
  - thermal annealing
  - laser annealing
- 4. Conclusions

## Introduction

#### **HfO**<sub>2</sub> properties:

- High density (9.86 g/cm<sup>2</sup>)
- High melting point (2800°C)
- High thermal and chemical stability
- Large heat of formation (271 Kcal/mol)
- Large band gap (5.86 eV)
- High refractive index (~ 2.00)
- High dielectric constant ( $k \approx 15-25$ )
- Stable bulk structures
- monoclinic: symmetry, P121/c1, SGP- (14) (a = 0.51156nm, b= 0.51722 nm, c= 0.52948 nm ,  $\beta$  = 99,2)
- orthorhombic: symmetry , Pbca , SGP- ( 61) (a = 1.0017 nm , b= 0.5228 nm, c= 0.506 nm )
- High temperature structures (1700°C) tetragonal ( a = 0.515 nm, c = 0.525 nm), symmetry P42/nmc (2600°C) cubic (a = 0.511), symmetry F3m3





Monoclinic [010] HfO<sub>2</sub>

Orthorhombic [001] HfO<sub>2</sub>

## Introdution

## **Applications:**

- in micro and optoelectronics,
  - high k material (as replacing SiO<sub>2</sub>) in electronic and optoelectronic devices
  - optical coatings when high optical damage thresholds are needed
  - waveguide fabrication
- as material for nanofiltration membranes
- films with high pencil hardness (over 9H) and hydophobicity
- protection material against oxidation/corrosion

#### Introdution

- HfO<sub>2</sub> thin films can be prepared by various methods:
  - Atomic Layer Deposition,
  - Pulsed Laser Deposition,
  - Chemical Vapor Deposition,
  - Radio Frequency Sputtering
  - Plasma oxidation of Hf film
- All mentioned techniques require high temperature treatments that induce a deterioration of the device performance and reliability
- The sol-gel process offers an alternative method to avoid the deterioration of film properties by high thermal treatment

# **Experimental**

- The reagents:
- Hf-ethoxide  $Hf(OC_2H_5)_4$  (Alfa Aesar), Hf-pentadionate and Hf-chloride, as  $HfO_2$  source,
- acetyl acetone AcAc (Fluka) as chelating agent and
- absolute alcohol p.a. (Merck) as solvent.
- Molar ratio:  $Hf(OC_2H_5)_4/Acac = 1$
- Solution preparation: mixing of the reagents in  $N_2$  atmosphere at 100°C for two hours when staring with Hf-ethoxide, and ambient atmosphere for the other precursors.

# **Experimental**

#### • Film deposition:

- substrates: [100] silicon wafer
- deposition method: dip-coating, 5 cm/min

#### • Film drying and thermal crystallization:

- drying 10 min at 100 °C
- precursor species elimination and densification 30 min at 400, 600, 800°C

#### Laser annealing:

- XeCl Lambda Physics excimer laser (I = 308 nm, tFWHM = 10 ns) using a homogenised laser beam spot with an area of about 1cm<sup>2</sup>, with:
  - fluences between 30 and 120 mJ/cm<sup>2</sup> and
  - different number of pulses between 100 and 10000.

# **Experimental**

#### Films characterisation

- High resolution TEM imaging using a Topcon 002 B electron microscope
- Conventional TEM imaging and SAED pattern using a Jeol 200CX microscope
- TEM specimen preparation by two methods:
   Cross section (XTEM) preparation using the conventional methods with
   mechanical and ion-milling (Gatan 691A- PIPS)
- AFM images
- RBS measurements
- Dielectric constant measuremenst



Plan view conventional TEM image and SAED pattern from a HfO<sub>2</sub> sol-gel film dried at 100°C and supplementary annealed at 150°C for 30 minutes, to increase the stability in the microscope (Hf-etoxide precursor)





- ▶ AFM images of the dip coated films 1 layer dried at 100 °C
  - Very low RMS roughness: 0.23 nm



Plan view conventional TEM image and SAED pattern from a HfO<sub>2</sub> double layer annealed at 400°C

The structure is still amorphous with a beginning of crystallization



RBS spectra of the dried and thermally treated film at 400°C



XTEM images of an amorphous sol-gel HfO<sub>2</sub> mono-layer film after annealing at 400°C...





Plan view HRTEM image of a double layer film annealed at 600°C





HRTEM plan view of HfO<sub>2</sub> mono-layer film annealed at 600°C

XTEM observation of a monolayer HfO<sub>2</sub> sol-gel film obtained by thermal annealing at 600°C





- ► AFM images of the dip coated films 1 layer thermally treated at 600 °C
  - Very low RMS roughness: 0.32 nm



Cross section high resolution XTEM images from a monolayer film annealed at 600°C (left) and 800°C (right)



TEM image of a mono-layer film annealed at 450°C, obtained from Hf-ethoxide precursor.



TEM image of a mono-layer film annealed at 600°C, obtained from Hf-ethoxide precursor.



TEM image of a monolayer film annealed at 450°C, obtained from Hf-chloride precursor



TEM image of a mono-layer film annealed at 600°C, obtained from Hf-pentadionate precursor

• M.Zaharescu, V.S. Teodorescu, M.Gartner, M.G.Blanchin, A.Barau, M.Anastasescu, J. Non-Cryst. Solids, <u>354</u>, 409-415 (2008)



Low resolution XTEM image of a 5 ayers HfO<sub>2</sub> film, taken in a thick area of the XTEM specimen



Typical C-V curve for a MOS structure including a four layer  $HfO_2$  film annealed at  $600^{\circ}C$  k = 25



- Low operation voltage
- Almost no hysteresis
- Very limited gate leakage
- Good mobility

# **Conclusion – thermal annealing**

- The as-deposited HfO<sub>2</sub> film is amorphous and start to crystallize at 400°C, leading to a very homogeneous morphology and very low roughness
- Thermal annealing at 600°C leads to crystallization of the HfO<sub>2</sub> sol-gel film in monoclinic phase
- An intermediate SiO<sub>2</sub> layer of about 5 nm was formed assigned to Si wafer oxidation, that increases by subsequent thermal treatment
- Dens films could be obtained by multi-layer deposition.
- Such films present a dielectric constant close to that of the bulk material.
- ➤ Pulse laser annealing can provide a method to limit the growth of the SiO₂ layer due to the limited time of oxygen diffusion from the film surface to the substrate interface

- XeCl Lambda Physics excimer laser (I = 308 nm, tFWHM = 10 ns) using a homogenised laser beam spot with an area of about 1cm<sup>2</sup>, with:
  - fluences between 30 and 120 mJ/cm2 and
  - different number of pulses between 100 and 10000.







XTEM images of a  $HfO_2$  sol-gel double layer film (a) and detail of the interface with the silicon substrate (b). The film was laser irradiated with 100 laser pulses at the fluence of 30 mJ/cm<sup>2</sup>. The thickness of the  $SiO_2$  interface layer is about 4 nm



XTEM image of a HfO<sub>2</sub> film after laser irradiation with 100 pulses at the fluence of 65 mJ/cm<sup>2</sup>. The HfO<sub>2</sub> thickness is about 24 nm and the SiO<sub>2</sub> interface layer is about 4 nm





XTEM structure of the HfO<sub>2</sub> film irradiated with 10000 pulses at 80 mJ/cm<sup>2</sup> fluence. The structure remains amorphous and the SiO<sub>2</sub> interface layer is about 6 nm (left) Details showing the Si(Hf)O<sub>2</sub> amorphous structure formation (right)



Blister nucleation at the fluence of 100 mJ/cm<sup>2</sup>, after 5000 pulses. The SiO<sub>2</sub> layer arrives at the thickness of about 8 nm.



C-V curves recorded for dielectric measurements in the case of HfO<sub>2</sub> film sample irradiated with 80nJ/cm<sup>2</sup> and 10000 laser pulses.



C-V curves records for dielectric measurements realized at 100Hz and table with calculated dielectric constant values

## **Conclusions**

- Crystallization of amorphous sol-gel HfO<sub>2</sub> thin films has been studied both by thermal annealing and by pulsed laser annealing (at fluences between 30 and 120 mJ/ cm<sup>2</sup> and different number of pulses between 100and 10000 fluence)
- By thermal annealing monoclinic phase is obtained at 600°C
- By laser annealing at low fluences (under 80 mJ/cm<sup>2</sup>) the films did not crystallize and at high fluences (120 mJ/ cm<sup>2</sup>) the film crystallize but blistering of the film occur
- In both cases the formation of the intermediate SiO<sub>2</sub> film could not be avoided
- High dielectric constant values could be obtained in both cases (~ 25). The value is strongly influenced by the structure and morphology of the film.
- Thermal treated films present a better structure and morphology for further applications

# **Acknowledgements**

Dr.Mariuca Gartner

Dr.V.S.Teodorescu – IFTM

Dr.Mihai Anastasescu

Dr. Alexandra Barau

Dr.M-G Blanchin – Univ,Lyon 1 Dr.J.Tardy – Ecole Central de Lyon

Partially the work was supported by the France-Romanian inter-guvernamental collaboration with Département de Physique des Matériaux/CNRS, Université Claude Bernard LYON I, France.

Thank you for your attention!